Responses of medullary dorsal horn neurons to corneal stimulation by CO(2) pulses in the rat.
نویسندگان
چکیده
Corneal-responsive neurons were recorded extracellularly in two regions of the spinal trigeminal nucleus, subnucleus interpolaris/caudalis (Vi/Vc) and subnucleus caudalis/upper cervical cord (Vc/C1) transition regions, from methohexital-anesthetized male rats. Thirty-nine Vi/Vc and 26 Vc/C1 neurons that responded to mechanical and electrical stimulation of the cornea were examined for convergent cutaneous receptive fields, responses to natural stimulation of the corneal surface by CO(2) pulses (0, 30, 60, 80, and 95%), effects of morphine, and projections to the contralateral thalamus. Forty-six percent of mechanically sensitive Vi/Vc neurons and 58% of Vc/C1 neurons were excited by CO(2) stimulation. The evoked activity of most cells occurred at 60% CO(2) after a delay of 7-22 s. At the Vi/Vc transition three response patterns were seen. Type I cells (n = 11) displayed an increase in activity with increasing CO(2) concentration. Type II cells (n = 7) displayed a biphasic response, an initial inhibition followed by excitation in which the magnitude of the excitatory phase was dependent on CO(2) concentration. A third category of Vi/Vc cells (type III, n = 3) responded to CO(2) pulses only after morphine administration (>1.0 mg/kg). At the Vc/C1 transition, all CO(2)-responsive cells (n = 15) displayed an increase in firing rates with greater CO(2) concentration, similar to the pattern of type I Vi/Vc cells. Comparisons of the effects of CO(2) pulses on Vi/Vc type I units, Vi/Vc type II units, and Vc/C1 corneal units revealed no significant differences in threshold intensity, stimulus encoding, or latency to sustained firing. Morphine (0.5-3.5 mg/kg iv) enhanced the CO(2)-evoked activity of 50% of Vi/Vc neurons tested, whereas all Vc/C1 cells were inhibited in a dose-dependent, naloxone-reversible manner. Stimulation of the contralateral posterior thalamic nucleus antidromically activated 37% of Vc/C1 corneal units; however, no effective sites were found within the ventral posteromedial thalamic nucleus or nucleus submedius. None of the Vi/Vc corneal units tested were antidromically activated from sites within these thalamic regions. Corneal-responsive neurons in the Vi/Vc and Vc/C1 regions likely serve different functions in ocular nociception, a conclusion reflected more by the difference in sensitivity to analgesic drugs and efferent projection targets than by the CO(2) stimulus intensity encoding functions. Collectively, the properties of Vc/C1 corneal neurons were consistent with a role in the sensory-discriminative aspects of ocular pain due to chemical irritation. The unique and heterogeneous properties of Vi/Vc corneal neurons suggested involvement in more specialized ocular functions such as reflex control of tear formation or eye blinks or recruitment of antinociceptive control pathways.
منابع مشابه
Somatovisceral interactions in the rat dorsal column nuclei
Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...
متن کاملSomatovisceral interactions in the rat dorsal column nuclei
Recent studies have revealed that noxious visceral inputs travel in the dorsal column pathway, and interactions between colorectal noxious and tactile inputs occur in the ventrobasal thalamus. This investigation was to test whether the somatovisceral interactions also take place in the dorsal column nuclei (DCN). Forty-five single DCN neurons of anesthetized rats responsive to colorectal disten...
متن کاملRole of nitric oxide and Jun N-terminal kinase in the development of dark neurons in the dorsal horn of the spinal cord following induction of inflammatory pain
Introduction: Dark neurons which their morphological characteristics are consistent with those of cells undergoing apoptosis, are generated as an acute or delayed consequence of several pathological situations. The present study was designed to evaluate whether inflammatory pain regarding the role of NO and JNK lead to the formation of dark neurons in the dorsal horn of the lumbar spinal cor...
متن کاملGabapentin prevents oxaliplatin-induced central sensitization in the dorsal horn neurons in rats
Objective(s): The present study aims to study the alteration of glutamatergic transmission in the dorsal horn neurons and the effect of gabapentin on oxaliplatin-induced neuropathic pain in rats. Materials and Methods: Oxaliplatin (5 mg/kg) or saline was administered to adult male Sprague-Dawley rats. Gabapentin (60 mg/kg, IP) or vehicle was injected daily. Mechanical allodynia was assessed us...
متن کاملThe firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat
Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal horn is well described, the midbrain neural basis underlying each phase of behavior in formalin test has not been clarified. The present study was designed to investigate the nucleus cuneiformis (CnF) neuronal responses during two phases after subcutaneous injection of formalin into the hind paw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 82 5 شماره
صفحات -
تاریخ انتشار 1999